Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY **Summer Examination-2022**

Subject Name: Linear Algebra-II

Subject	t Cod	e: 4SC04LIA1 Branch: B.Sc. (Mathemati	Branch: B.Sc. (Mathematics)	
Semest	er: 4	Date: 05/05/2022 Time: 11:00 To 02:00	Marks: 70	
(2) (3)	Use of Instru Draw	of Programmable calculator & any other electronic instrument is pro- uctions written on main answer book are strictly to be obeyed. w neat diagrams and figures (if necessary) at right places. me suitable data if needed.	ohibited.	
Q-1	a)	Attempt the following questions: An angle between vectors $u = (1,0)$ and $v = (0,1)$ is (a) $\frac{\pi}{2}$ (b) $\frac{3\pi}{2}$ (c) π (d) 0	(14) (01)	
	b)	If $u = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$ then $ u = $	(01)	
	c)	(a) 1 (b) 2 (c) 3 (d) 4 The vectors u and v are orthogonal to each other in inner product V, then $\langle u, v \rangle =$	space (01)	
	d)	(a) 0 (b) 1 (c) -1 (d) π The Eigen value of matrix $A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$ are (a) 1 and -2 (b) 1 and 2 (c) -1 and 2 (d) None	(01)	
	e)	An angle between $v = (x, y)$ and $w = (-y, x)$ where $x \neq y \neq 0$. (a) 0 (b) π (c) 2π (d) $\frac{\pi}{2}$	(01)	
	f)	Is set $S = \{u_1, u_2\}$ where $u_1 = (2,0)$ and $v_2 = (0,2)$ is basis for R^2 (a) True (b) false (c) both (d) none	² ? (01)	
	g)	Define : Angle between vectors in inner product space V.	(01)	
	h)	Define: Orthogonal set in inner product space V.	(01)	
	i)	Define : Inner product space.	(02) (02)	
	j) k)	Define : Orthonormal basis for inner product space V. Define : Orthogonal compliment.	(02) (02)	

Attempt any four questions from Q-2 to Q-8

Q-2	a)	Attempt all questions Compute the angle between $u = e_1$ and $v = e_2 + e_2$ in \mathbb{R}^2 , where $e_1 = (1,0)$ and $e_2 = (0,1)$.	(14) (05)
	b)	Let $x, y, z \in V$ let $x \perp y$ and $y \perp z$ then prove that $x \perp (\alpha y + \beta z, \forall \alpha, \beta \in F.$	(05)
	c)	Prove that $ x = y \Leftrightarrow (x - y) \perp (x + y).$	(04)
Q-3	a)	Attempt all questions Let v and w are two non-zero vectors in V with $v \perp w$ let $\alpha, \beta \in F$ such that $\alpha v + \beta w = 0$ then $\alpha = \beta = 0$.	(14) (05)
	b)	Prove that for any $x, y \in V$, show that $ x + y ^2 + x - y ^2 = 2(x ^2 + y ^2)$.	(05)
	c)	Show that the vectors $u_1 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$, $u_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$, $u_3 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$ are orthogonal to each other in inner product space R^3 .	(04)
Q-4	a)	Attempt all questions let <i>S</i> be a non-empty subset of <i>V</i> , let $S = \{v \in V < v, s \ge 0, \forall s \in S\}$ then prove that S^{\perp} is vector subspace of <i>V</i> .	(14) (05)
	b)	Show that the parallelogram is rhombus \Leftrightarrow the diagonal are perpendicular to each other.	(05)
	c)	Find the orthogonal projection of $u = (1, -2, 3)$ along $v = (1, 2, 1)$ in R^3 with respect to Eclidean inner product space.	(04)
Q-5	a)	Attempt all questions Prove that any orthogonal set in inner product space V is linearly	(14) (05)
	,	Independent.	
	b) c)	Prove that x and y are orthogonal $\Leftrightarrow x + y ^2 = x - y ^2$ Find the Eigen values of matrix $A = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix}$	(05) (04)
Q-6	a)	Attempt all questions let $T: V \to V$ be a linear transformation then prove that the following statements are equivalent. (i) T is orthogonal (ii) $ Tx = x $, $\forall x \in V$ (iii) T maps orthonormal basis to orthonormal basis	(14) (06)
	b)		(05)
	c)	Show that $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}.$	(03)
Q-7		Attempt all questions	(14) (05)

a) If $V = R^2$ and $x = (x_1, x_2) \& y = (y_1, y_2) \in R^2$ then show that the area parallelogram spread by x and y is det(x, y). (05)

	b) Let <i>V</i> be an inner product space, then the map $f(x, y) = \langle x, y \rangle$ is bilinear map.		(05)
	c) Prove that det(<i>AE</i>	$B) = \det(A) \det(B).$	(04)
Q-8	Attempt all ques a) State and prove R	tions iesz representation theorem.	(14) (07)

a) State and prove Riesz representation theorem. (07) b) Apply Gram-Schmidth process to obtain orthonormal set $S = \{u_1, u_2, u_3\}$ (07) Where $u_1 = (-1,0,1), u_2 = (1,-1,0), u_3 = (0,0,1).$

